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Finite Element Analysis of Dispersion in
Waveguides with Sharp Metal Edges

J. P. WEBB, MEMBER, IEEE

Abstract —The dispersion characteristics of arbitrarily shaped wave-
guides with sharp metal edges are found by a finite element method in
which the usual polynomials are supplemented by singular trial functions.
As in recent approaches, the method solves for the three components of
the magnetic field and can thereby avoid spurious modes. Results are
presented for a rectangular waveguide with two double ridges and for
shielded microstrip on isotropic and anisotropic substrates.

I. INTRODUCTION

AVEGUIDES with sharp metal edges are widely

used at microwave frequencies; examples are ridge
guide, microstrip, slotline and finline. It is often necessary
to be able to predict dispersion in such waveguides, and
numerous analytical techniques have been developed for
particular geometries. For example, the singular integral
equation [1] and spectral-domain methods [2] have been
used to find dispersion curves for planar waveguides with
infinitely thin conductors. Of the techniques capable of
analyzing arbitrary geometries, there has been some suc-
cess with finite element and finite difference methods
which use two axial field components as unknowns. How-
ever this approach cannot handle generally anisotropic
materials and, more seriously, suffers from the presence of
spurious solutions. For these reasons, a better approach is
a vector method which uses the three-component magnetic
field, H, as the unknown [3].

Unfortunately, the transverse part of the magnetic or
electric field is infinite at a sharp edge of a perfectly
conducting boundary [4]. This is quite different from the
behavior of the axial components, or of the potential used
in quasi-static analysis [5]—these variables have infinite
derivatives at such an edge, but are themselves finite. The
three-component methods presented to date do not ade-
quately address the problems that this singularity poses.
The methods have used as basis functions the piecewise
polynomials traditionally associated with finite elements.
Such functions cannot represent accurately an infinite
field. The solution proposed in this paper is to supplement
the polynomials with singular trial functions.
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II. VARIATIONAL PRINCIPLE AND
BouNDARY CONDITIONS

Assume that the electromagnetic field in the waveguide
varies as exp(Jjkoct — jBz), where ¢ is time, z is the
distance along the guide axis, k, is the free-space
wavenumber, c¢ is the velocity of light in a vacuum, and B
is the phase constant in the waveguide. This exponential
factor will be omitted for brevity.

The vector finite element method finds the stationary
points of the following functional [3], [6]:

F(H) =/;[(v XH)Y* ¢, 1 (Vv XH)+s|v-p H|?

—kiH*-p H|dS. (1)

Here * denotes complex conjugate, S is the cross section
of the waveguide, and €, and p, are the relative permittiv-
ity and permeability tensors. The second of the three terms
in the functional is a penalty term, added to reduce the
divergence of the magnetic flux density and hence to
remove spurious modes [6], [7]. The parameter s is a real
scalar, called the penalty parameter.

In finding the stationary points of F it is necessary to
impose the boundary condition

HXn=0 on G, (2)
where C, is a part of the perimeter of S corresponding to a
perfect magnetic conductor, and n is a unit outward
normal to the perimeter. The boundary conditions on

perfectly conducting metal,

¢

(VXH)Xn=0 (3)

\

and

H-n=90 on C,

are satisfied naturally by stationary points of F, and it
would not seem necessary to impose them. However, in
order to eliminate spurious modes, the magnetic charge on
C, must be made small explicitly, for the same reason that
the magnetic charge inside the waveguide must be reduced
by using a penalty term [6], [7] or some other technique [8],
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Fig. 1. The cylindrical coordinate system based on a sharp edge of a

perfectly conducting boundary.

[9]. Therefore, the boundary condition

H-n=0 onC, (4)

is imposed explicitly.

The stationary points (H, k) of F, subject to boundary
conditions (2) and (4), are the modes of the waveguide
which have the specified value of 8. A similar functional
and variational result exist for the electric field.

III. SINGULAR TRIAL FUNCTIONS

A typical sharp metal edge, and cylindrical coordinates
based on it, are shown in Fig. 1. How should the boundary
condition (4) be imposed at the edge, where there are two
different normal vectors? One approach is to enforce

Hn,=0 (5)
where n_, bisects the angle between the two normals. Note
that if this is done, (4) will not be exactly satisfied along
the two metal walls that meet at the edge. Another ap-
proach would be to leave the field free at the edge (pre-
sumably leaving it free at just a few boundary points in the
problem would not introduce spurious modes). Finally, the
transverse magnetic field could be set to zero there. which
would at least satisfy (4) exactly along the two metal walls.

None of these approaches is entirely satisfactory because
in fact the field is infinite at the edge. Let a be the interior
angle, in radians, between 7 and 2#. The transverse mag-
netic field very close to the edge, when no magnetic
material is present, is the gradient of a harmonic function
which satisfies Neumann boundary conditions on the two
conducting surfaces [4]. Starting from this, the transverse
field H, may be expressed as a series in powers of r, of
which just the first m, terms are singular:

H= ¥ 4,1,(r9)+0(r) (©
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where A4, are arbitrary coefficients and

fo=r"""a,cos(mq(p —,)) — a,sin(mg(p—g,))]

(7)
(8)

Here a, and a, are unit vectors in the radial and az-
imuthal directions, respectively. There is a maximum of
three singular functions f, for each sharp edge. Of these,
only the first is infinite at the edge; the remainder have
infinite derivatives. A similar expansion is possible for the
transverse electric field.

Suppose that for the problem as a whole, there are M
such singular functions. Let these functions be f,, where i
is now an index ranging from 1 to M. Then with respect to
a given subdivision of the guide cross section into trian-
gles, trial functions g, are defined as follows:

T ]2
g=-— and my=1int|—|.
a q

)10
g(r)=f(r)= X fuo(r), i=1- M. (9)

n=1
Here r 1s a vector denoting a point in the guide cross
section; «, are the usnal n, Lagrange polynomials [10]
associated with the triangle containing the point »; and f;,
is the value of f, at the nth node of the triangle (zero if f,
is infinite at the wnth node). The functions g, are so
constructed that they have the same behavior as the corre-
sponding f near the latter’s singular point, and they
vanish at every other node of the finite element mesh.
Note that each g, extends over the whole cross section of
the waveguide, but becomes increasingly small far from its
singular point as the variation of f is better modeled by
the polynomials in (9).

The singular functions g, are used to supplement the
polynomial trial functions over the mesh of triangles.
Specifically, the magnetic field is taken to be

ng M
H(r)= ) Ha,(r)+ ¥ Kg(r)
n=1

=1

(10)

where H, and K, are unknown coefficients and, as before,
a, are the polynomials associated with the triangle con-
taining point r. In fact H, is the magnetic field at node n
of the triangle, provided none of the singular functions is
infinite at the node.

IV. EVALUATION OF THE FUNCTIONAL

The evaluation of the functional F for a magnetic field
of the form (10) presents a few difficulties. The differentia-
tion in (1) is relatively straightforward when it is noted
that:

1) Differentiation with respect to z is just multiplica-
tion by — jB.
2) vV X f,=JBf xa,
v-f=20

where a is a unit vector along the guide axis.

(1)
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3) The other derivatives in (1) can be dealt with by
using the precalculated D matrices of Silvester [11]:
de,

ng
8§p E Di(JP)aJ’

J=1

fori=1,---,ny

p=1,2,3 (12)

where {, is the pth area coordinate in the triangle.

The integration in (1) reduces to the following integrals
over each element S,:

7:12./:;01,06/61.5, i=1,"'7n0;j=17”'7n0 (13)

I,J=L°,a,ds, e My j=1,01,n, (14)

G,j=fsa,ojds, L M; =1, M (15)

where o, obtained from the x or y component of f, is

(16)

Notice that all of the integrands are of the form U(r)V(r).
T,, can be readily computed from the area of the triangle
and precalculated universal T matrices [11]. The other two
integrals must be evaluated numerically. If the integrand is
not singular in the element S,, then appropriate Gauss
quadrature formulas are used [12]. If the integrand is
singular in the triangle, it is first expressed as the sum of a
singular part, W(r), and a nonsingular part, UV — W. Let
r, be the point at which U is singular, and let r, be the
point at which V is singular. There are four cases to
consider, depending on whether these points are in the
triangle or not:

If U is singular in the triangle and V is not:

~1€OS
o =r" lsin [mCI((P“‘(Po)_‘P]-

W(r)=U(r)V(r,). (17a)
If V is singular in the triangle and U is not:
W(r)=V(r)U(r,). (17b)

If both U and V are singular in the triangle, at different
points:
W(r)=U(r)V(r)+V(r)U(r,). (17¢c)
If both U and V' are singular in the triangle, at the same
point:
W(r)=U(r)V(r). (17d)
In each case UV — W is nonsingular and can be integrated
with Gauss formulas [12].
Also, in each case, W is of the form
rPh(e), (18)

where (7, @) are cylindrical coordinates based on one of
the sharp edges, coincident with a vertex of the triangle,
and 4 is a bounded function of ¢ only. Then, with R, H,

-1<bx0
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Fig. 2. A triangle with a vertex at a sharp edge. (The other triangles in
the interior of the waveguide are omitted.)

@1, ¢,, and 6 as indicated in Fig. 2,

fr”h(q)) dS=f(p2 fR((p)r”h(w)rqudr
S. [+ 0

= r=

=b%f:; [R(e)]*h(p) do (19)

where R(¢) is

(20)

The integrand in (19) is nonsingular and can be integrated
with 1-D Gauss formulas.

Finally, the contribution to the functional from the eth
triangle can be written

FO = x@H[ 4 L 4C© — 2B©] x(© (21)

where the superscript e denotes the eth element, and the
superscript H stands for complex-conjugate transpose;
x(©) is a column vector whose entries are the 3n,, Cartesian
components of the magnetic field at the nodes, and the
M unknown coefficients K,. 4‘9, B, and C¥ are
(3ny+ M) by (3n,+ M) Hermitian matrices.

The functional F is the sum of contributions from all

the triangles of the cross section S, and can be written

F=x"[4+sC—k2B]x (22)
where A, B, and C are large, sparse, square, Hermitian
matrices, and x is a column vector whose entries are all
the unknown components of the magnetic field at the
nodes, and the coefficients K.

The boundary conditions (2) and (4) are enforced either
by expressing one Cartesian field component in terms of
another or by setting components to zero at each boundary
node. Both transverse components of the magnetic field
are set to zero at a node at a sharp edge, in order to satisfy
the boundary condition (4) along the metal walls that meet
there. The result is that the column vector x can be written
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Fig. 3. Rectangular waveguide with two double rdges. b/a=0.3,
d/b=01, s/a=0125 h/b=0.7, t/a=0.5. The broken line is a
plane of symmetry.

in terms of a smaller vector y containing just those compo-
nents and coefficients that are nonzero and independently
variable:

(23)

x=Ry
where R is a real, rectangular matrix. Then
F=yH[4'+5C'~kiB'] y (24)

where A4’ is the reduced matrix R74R; the same is true for
B’ and C.

V. THE ALGEBRAIC EIGENVALUE PROBLEM

The stationary points of the functional F are given by
the eigensolutions of the matrix equation:

(4" +sC")y=k2B'y (25)

Efficient methods exist for finding the first few eigenvalues
and corresponding eigenvectors of this sparse matrix equa-
tion; in the present instance, trace minimization is used
[13]. This method requires the storage and manipulation of
only the nonzero entries of the matrices and has a com-
plexity which is roughly O(N'3), where N is the matrix
dimension. To find the lowest two modes when the matrix
dimension is 450 and there are about 33 nonzeros per row
in each matrix takes about 20 minutes of CPU time on an
HP 9000 Series 500 computer.

A modification of the algorithm [14] allows for the
automatic adjustment of the penalty parameter s during
solution, to eliminate spurious modes. However, when just
the slow-wave region is of interest, it is sufficient to hold
the penalty parameter fixed at 1.0 [15]. This approach was
taken for the microstrip problems below.

VI. REsuLrts

Fig. 3 shows a rectangular waveguide with two double
ridges. This structure is air-filled and has modes which are
TE or TM., so it could be more efficiently analyzed with a
single axial component of E or H. However, it was chosen
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TABLE I
CutorF WAVENUMBER, k,, (rad /m) FOR THE FIRST TWO MODES
OF THE WAVEGUIDE SHOWN IN F1G. 3

F.E. Solution Ref,
Mode b-- —_— [16]
Magnetic Electric
Dominant 0.923 0. 904 0.911
Subdominant 1,177 1. 150 1,161
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Fig. 4. A shielded microstrip transmission line. The broken line shows
the plane of symmetry. L=12.7 mm, W=127 mm, 7 =127 mm,
H =127 mm.

as a test problem because it has eight sharp edges (four in
the half problem).

One half of the problem was analyzed at cutoff (8 = 0),
using 42 second-order elements and eight singular trial
functions. To get the two lowest modes, it was necessary to
solve two problems: one with an electric wall and one with
a magnetic wall on the plane of symmetry. Each problem
was analyzed twice, once with the magnetic field as the
unknown and once with the electric field. The lowest two
modes are TE and therefore at cutoff they have only an
axial component of the magnetic field. The electric field is
more interesting, because it is transverse and infinite at the
sharp edges. The cutoff frequencies have been previously
obtained with an accuracy of about 1 percent [16]. See
Table 1.

The electric field cases were also solved without singular
trial functions, but with the field constrained by (5) at each
sharp edge. The first two wavenumbers were extremely
inaccurate: 3.05 rad/m and 3.23 rad /m, respectively.

A second test problem was the shielded microstrip shown
in Fig. 4. One half of the problem was analyzed, with a
magnetic wall on the plane of symmetry. A total of 73
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Fig. 5. Dispersion curves for the first two modes of the transmission
line of Fig. 4, with a magnetic wall at the plane of symmetry. Isotropic
substrate, €, =8.875. +=0. The solid line for the lowest mode is from
[1}; the sohd line for the next mode is from® [17], squares are finite
element results. The broken line marked AIR is the dispersion curve
for a uniform plane wave in free space; the broken line marked
DIELECTRIC is the dispersion curve for a uniform plane wave in the
substrate. The broken line marked STATIC is the low-frequency ap-
proximation for the dominant mode (from Wheeler [18]).

TABLE II
COMPUTED FREQUENCIES AT Tw0O VALUES OF PHASE CONSTANT
FOR THREE CASES CORRESPONDING TO DIFFERENT BOUNDARY
’ CoNDITIONS IMPOSED ON THE SHARP EDGE
OF THE MICROSTRIP SHOWN IN FIG. 4

Frequency (GHz)
Case B - - :
B :'0 B = 2 rads/mm
A 12. 82 37. 21
B 11. 81 36. 91
C 0. 9% 34, 42

second-order elements were used (most of them pl;aced
close to the central conducting strip). The results ‘are
plotted in Fig. 5. Table II demonstrates that if singular
trial functions are not used, a considerable overestimation
of the frequencies results. For case A, (5) was enforced; for
case B, the ficld at the node on the sharp edge was allowed
to vary freely; for case C, singular functions were used. ~
The same microstrip line was then solved with an
anisotropic substrate. The results are shown in Fig. 6.

VIL

The vector finite element method presented is an effec-
tive way to predict dispersion in arbitrary waveguides with
sharp metal edges. The success of the method is largely
due to the use of special trial functions which model the
singular behavior of the field close to sharp edges

CONCLUSIONS
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Fig. 6. Dispersion curves for the first two modes of the transmission
line of Fig. 4, with a magnetic wall at the plane of symmetry. Sapphire
substrate: €,,, =94, ¢,,, =11.6, and ¢,,, = 9.4, 1 = 0. The solid line for
the lowest mode is from [19], wnh no shleld ‘present. The squares are

the finite element results.
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