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Finite Element Analysis of Dispersion in
Waveguides with Sharp Metal Edges

J. P. WEBB, MEMBER, IEEE

Abstract —The dkpersion characteristics of arbitrarily shaped wave-

guides with sharp metal edges are found by a finite element method in

which the usuaf polynomials are supplemented by singular trial fnnctions.

As in recent approaches, the method solves for the three components of

the magnetic field and can thereby avoid spurious modes. Results are

presented for a rectangular waveguide with two double ridges and for

shielded microstrip on isotropic and anisotropic substrates.

I. INTRODUCTION

w AVEGUIDES with sharp metal edges are widely

used at microwave frequencies; examples are ridge

guide, microstrip, slotline and finline. It is often necessary

to be able to predict dispersion in such waveguides, and

numerous analytical techniques have been developed for

particular geometries. For example, the singular integral

equation [1] and spectral-domain methods [2] have been

used to find dispersion curves for planar waveguides with

infinitely thin conductors. Of the techniques capable of

analyzing arbitrary geometries, there has been some suc-

cess with finite element and finite difference methods

which use two axial field components as unknowns. How-

ever this approach cannot handle generally anisotropic

materials and, more seriously, suffers from the presence of

spurious solutions. For these reasons, a better approach is

a vector method which uses the three-component magnetic

field, H, as the unknown [3].

Unfortunately, the transverse part of the magnetic or

electric field is infinite at a sharp edge of a perfectly

conducting boundary [4]. This is quite different from the

behavior of the axial components, or of the potential used

in quasi-static analysis [5] —these variables have infinite

derivatives at such an edge, but are themselves finite. The

three-component methods presented to date do not ade-

quately address the problems that this singularity poses.
The methods have used as basis functions the piecewise

polynomials traditionally associated with finite elements.

Such functions cannot represent accurately an infinite

field. The solution proposed in this paper is to supplement

the polynomials with singular trial functions.
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II. VARIATIONAL PRINCIPLE AND

BOUNDARY CONDITIONS

Assume that the elect romagnetic field in the waveguide

varies as exp ( jkOct – jflz ), where t is time, z is the

distance along the guide axis, k. is the free-space

wavenumber, c is the velocity of light in a vacuum, and ~

is the phase constant iml the waveguide. This exponential

factor will be omitted fcr brevity.

The vector finite element method finds the stationary

points of the following functional [3], [6]:

F(H) =~[(v XH)*. C;l. (V XH)+,SlVOp,H12
s

- k:H*qq..H] dS. (1)

Here * denotes complex conjugate, S is the cross section

of the waveguide, and c, and p, are the relative permittiv-

ity and permeability tensors. The second of the three terms

in the functional is a penalty term, added to reduce the

divergence of the magnetic flux density and hence to

remove spurious modes [6], [7]. The parameter s is a real

scalar, called the penalty parameter.

In finding the stationary points of F it is necessary to

impose the boundary condition

Hxn=O on CO (2)

where CO is a part of the perimeter of S corresponding to a

perfect magnetic conductor, and n is a unit outwalrd

normal to the perimeter. The boundary conditions on

perfectly conducting metal,

(Vxlf)xn=o (3)

and

H.rt=O on C,

are satisfied naturally by stationary points of F, andl it

would not seem necessary to impose them. However, in

order to eliminate spurious modes, the magnetic charge on

C, must be made small explicitly, for the same reason that

the magnetic charge inside the waveguide must be redueed

by using a penalty term [6], [7] or some other technique [8],
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Fig, 1. The cyhndrical coordinate system based on a sharp edge of a

perfectly conducting boundary.

[9]. Therefore, the boundary condition

H.n=o on C~ (4)

is imposed explicitly.

The stationary points (H, ko) of F, subject to boundary

conditions (2) and (4), are the modes of the waveguide

which have the specified value of ~. A similar functional

and variational result exist for the electric field.

HI. SINGULAR TRIAL FUNCTIONS

A typical sharp metal edge, and cylindrical coordinates

based on it, are shown in Fig. 1. How should the boundary

condition (4) be imposed at the edge, where there are two

different normal vectors? One approach is to enforce

H.rt,v=O (5)

where n., bisects the angle between the two normals. Note

that if this is done, (4) will not be exactly satisfied along

the two metal walls that meet at the edge. Another ap-
proach would be to leave the field free at the edge (pre-

sumably leaving it free at just a few boundary points in the

problem would not introduce spurious modes). Finally, the

transverse magnetic field could be set to zero there. which

would at least satisfy (4) exactly along the two metal walls.

None of these approaches is entirely satisfactory because

in fact the field is infinite at the edge. Let LXbe the interior

angle, in radians, between v and 2 r. The transverse mag-

netic field very close to the edge, when no magnetic

material is present, is the gradient of a harmonic function

which satisfies Neumann boundary conditions on the two

conducting surfaces [4]. Starting from this, the transverse

field H, may be expressed as a series in powers of r, of

which just the first M ~ terms are singular:

H,= ~ Am fm(r, CP)+O(r) (6)
~=1

where A* are arbitrary coefficients and

fn=,’”q-l[~,cOs( mq(T-qo))-~psin (~q(9 -90))]

(7)

[1q=: and rnO=int ~
4“

(8)

Here a, and up are unit vectors in the radial and az-

imuthal directions, respectively. There is a maximum of

three singular functions j~ for each sharp edge. Of these,

only the first is infinite at the edge; the remainder have

infinite derivatives. A similar expansion is possible for the

transverse electric field.

Suppose that for the problem as a whole, there are M

such singular functions. Let these functions be ~1, where i

is now an index ranging from 1 to M. Then with respect to

a given subdivision of the guide cross section into trian-

gles, trial functions g, are defined as follows:
?1~

g,(r) = j(r)– ~ ~nan(r), ,..., M. (9)i=l
~=1

Here r is a vector denoting a point in the guide cross

section; a. are the usual n ~ Lagrange polynomials [10]

associated with the triangle containing the point K and ~~

is the value of ~ at the n th node of the triangle (zero if ~

is infinite at the n th node). The functions g, are so

constructed that they have the same behavior as the corre-

sponding ~ near the latter’s singular point, and they

vanish at every other node of the finite element mesh.

Note that each gZ extends over the whole cross section of

the waveguide, but becomes increasingly small far from its

singular point as the variation of ~ is better modeled by

the polynomials in (9),

The singular functions g, are used to supplement the

polynomial trial functions over the mesh of triangles.

Specifically, the magnetic field is taken to be

n ~

H(r) = ~ Hnan(r)+ f K,g, (r) (lo)
~=1 ~=1

where H. and K, are unknown coefficients and, as before,

a. are the polynomials associated with the triangle con-

taining point r. In fact H. is the magnetic field at node n

of the triangle, provided none of the singular functions is

infinite at the node.

IV. EVALUATION OF THE FUNCTIONAL

The evaluation of the functional F for a magnetic field

of the form (10) presents a few difficulties. The differentia-

tion in (1) is relatively straightforward when it is noted

that:

1) Differentiation with respect to z is just multiplica-

tion by – jfi.

2) VXJ=jP~Xaz

v.~= o (11)

where a, is a unit vector along the guide axis.
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3) The other derivatives in (1) can be dealt with by

using the precalculated D matrices of Silvester[ll]:

182,1

\

$==: q(:).,, fori=l,. ... nO;
P ~=1

b<

o
Interior

p=l,2,3 (12) ‘y 91 c~
where {P is the pth area coordinate in the triangle. ~ ‘d ‘,

Theintegration in(l) reduces to the following integrals
e~ ‘x- –____b~

over each element S,:
Exterior

J
~,= a,aJdS, i=l,. ... ‘–l . . ..?rorzo; J— , (13)

s,

J111= ala] dS, i=l,. ... M;j=l,. . .
s,

, no (14)
)

J
/

G,l = a,oj dS, i=l,. ... M;j=l,. ... M (15) Fig. 2. A triangle with a vertex at a sharp edge. (The other triangles in
s,

the interior of the waveguide are omitted.)

where u,, obtained from the x or y component of fi, is

(16)

Notice that all of the integrands are of the form U(r) V(r).

~, can be readily computed from the area of the triangle

and precalculated universal T matrices [11]. The other two

integrals must be evaluated numerically. If the integrand is

not singular in the element S,, then appropriate Gauss

quadrature formulas are used [12]. If the integrand is

singular in the triangle, it is first expressed as the sum of a

singular part, W(r), and a nonsingular part, UP’ – W. Let

ru be the point at which U is singular, and let ru be the

point at which V is singular. There are four cases to

consider, depending on whether these points are in the

triangle or not:

If U is singular in the triangle and V is not:

where R(qJ) is

H
R(q) = .

sm(rp–rpl+O) “
(20)

The integrand in (19) is nonsingular and can be integrated

with 1-D Gauss formulas.

Finally, the contribution to the functional from the e th

triangle can be written

[ 1~(e)=~(.)FI~(e)+~c(e)_~:~(e)~(e) (2:1)

W(r) =iY(r)V(ru). (17a) where the superscript e denotes the eth element, and the

If P’ is singular in the triangle and U is not:
superscript H stands for complex-conjugate transpose;
x(=) is a column vector whose entries are the 3n n Cartesian

W(r) =V(r)U(ru). (17b) components of the magnetic field at the nodes, and the

If both U and V are singular in the triangle, at different
ill unknown coefficients K,. A(=), B(e), and C~’~ are

(3n0 + M) by (3no + M ) Hermitian matrices.
points:

The functional F is the sum of contributions from all

W(r) =U(r)V(ru)+ V(r) U(ro). (17c) the triangles of the cross section S, and can be written

If both U and V are singular in the triangle, at the same

point:

W(r) =U(r)V(r). (17d)

In each case UV – W is nonsingular and can be integrated

with Gauss formulas [12].

Also, in each case, W is of the form

rbh(q), –l<b<O (18)

where (r, rp) are cylindrical coordinates based on one of

the sharp edges, coincident with a vertex of the triangle,

and h is a bounded function of T only. Then, with R, H,

F=x~[A+sC–k~B]x (22)

where A, B, and C are large, sparse, square, Hermitian

matrices, and x is a column vector whose entries are all

the unknown components of the magnetic field at tlhe

nodes, and the coefficients Kc.

The boundary conditions (2) and (4) are enforced either

by expressing one Cartesian field component in terms of
another or by setting components to zero at each boundary

node. Both transverse components of the magnetic field

are set to zero at a node at a sharp edge, in order to satisfy

the boundary condition (4) along the metal walls that meet

there. The result is that the column vector x can be written
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Fig. 3. Rectangular waveguide with two double ridges. b/a= 0.5,

d/b = 0.1. s/a = 0.125, h/b= 0.7, t/a = 0.5. The broken line is a
plane of symmetry.

in terms of a smaller vector y containing just those compo-

nents and coefficients that are nonzero and independently

variable:

x=Ry (23)

where R is a real, rectangular matrix. Then

F= y~[A’+tC’–k;B’] y (24)

where A‘ is the reduced matrix RTAR; the same is true for

B’ and C’.

V. THE ALGEBRAIC EIGENVALUE PROBLEM

The stationary points of the functional F are given by

the eigensolutions of the matrix equation:

(Af+.Yc’)y=k@’y (25)

Efficient methods exist for finding the first few eigenvalues

and corresponding eigenvectors of this sparse matrix equa-

tion; in the present instance, trace minimization is used

[13]. This method requires the storage and manipulation of

only the nonzero entries of the matrices and has a com-

plexity which is roughly 0( N15), where N is the matrix

dimension. To find the lowest two modes when the matrix

dimension is 450 and there are about 33 nonzeros per row

in each matrix takes about 20 minutes of CPU time on an

HP 9000 Series 500 computer.

A modification of the algorithm [14] allows for the

automatic adjustment of the penalty parameter s during

solution, to eliminate spurious modes. However, when just

the slow-wave region is of interest, it is sufficient to hold

the penalty parameter fixed at 1.0 [15]. This approach was

taken for the microstrip problems below.

VI. RESULTS

Fig. 3 shows a rectangular waveguide with two double

ridges. This structure is air-filled and has modes which are

TE or TM, so it could be more efficiently analyzed with a

single axial component of E or H. However, it was chosen

TABLE I

CUTOFF WAVENUMBER, /cfl (rad/m) FOR THE FIRST Two MODES

OF THE WAVEGUIDE SHOWN IN FIG. 3

—.... -..-— .——

1-F. E. Solution

‘---------1”------1

Ref.

Mode

__-”-

[16]

Magnetic Electrlc
.—.-..———

T----”-– ‘-0=--”---1-”=-1

.—
Doml nant o. 9?3

1

‘ubdwa!l.-1L’11:,_150._-..l_uzl
I

I

I

I

I
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Fiz. 4. A shielded microstriu transmission line. The broken line shows

;he plane of symmetry. ~= 12.7 mm, W= 1.27 mm, h = 1.27 mm,
H = 12.7 mm.

as a test problem because it has eight sharp edges (four in

the half problem).

One half of the problem was analyzed at cutoff (~ = O),

using 42 second-order elements and eight singular trial

functions. To get the two lowest modes, it was necessary to

solve two problems: one with an electric wall and one with

a magnetic wall on the plane of symmetry. Each problem

was analyzed twice, once with the magnetic field as the

unknown and once with the electric field. The lowest two

modes are TE and therefore at cutoff they have only an

axial component of the magnetic field. The electric field is

more interesting, because it is transverse and infinite at the

sharp edges. The cutoff frequencies have been previously

obtained with an accuracy of about 1 percent [16]. See
Table I.

The electric field cases were also solved without singular

trial functions, but with the field constrained by (5) at each

sharp edge. The first two wavenumbers were extremely

inaccurate: 3.05 rad/m and 3.23 rad/m, respectively.

A second test problem was the shielded microstrip shown

in Fig. 4. One half of the problem was analyzed, with a

magnetic wall on the plane of symmetry. A total of 73
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Fig. 5. Dispersion curves for the first two modes of the transmission

line of Fig. 4, with a magnetic wall at the plane of symmetry. Isotropic

substrate, c, = 8.875. t = O. The solid line for the lowest mode is from

[1]; the solid line for the next mode is from [17]; squares are finite

element results. The broken line marked AIR is the dispersion curve

for a uniform plane wave in free space; the broken line marked
DIELECTRIC is the dispersion curve for a uniform plane wave in the

substrate. The broken line marked STATIC is the low-frequency ap-
proximation for ‘the dominant ‘mode (from Wheeler [18]).

TABLE II

COMPUTED FREQUENCIES AT Two VALUES OF PHASE CONSTANT

FOR THRSE CASES CORRESPONDING TO DIFFERENT BOUNDARY

CONDITIONS IMPOSED ON THE SHARP EDGE

OF THE MICROSTRIP SHOWN IN FIG. 4

“--”---”’1
.. .....—...—..-.——---.,.—----.—.—.

Frequency (GHz)

Case _.. -- ——— —-— ——

B:O r—”f3: 2 rads\rnrn

r“--”-~---t”””-”-’’~~7:;1-”------~7:;1-”--”’--l
!--L:L::;......I

second-order elements were used (most of them placed

close to the central conducting strip). Tlie results ‘&e

plotted in Fig. 5. Table II demonstrates that if singular

trial functions are not used, a considerable overestimation

of the frequencies results. For case A, (5) was enforced; for

case B, the field at the node on the sharp edge was allowed

to vary freely; for case C, singular functions were used.

The same microstrip line was then solved with an

anisotropic substrate. The results are shown in Fig. 6.

VII. CONCLUSIONS

The vector finite ‘element method presented is an effec-

tive way to predict dispersion in arbitrary waveguides with

sharp metal edges. The success of the method is largely

due to the use of special trial functions which model the

singular behavior of the field close to sharp edges.
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Fig. 6. Dispersion curves for the first two modes of the transmissicm
line of Fig. 4, with a magnetic wall at the plane of symmetry. Sapphire

substrate: erx. = 9.4, crYY=11.6, and c,,, = 9.4, t =0. The solid line for

the lowest mode is from [19], with no shield ‘present. The squares are

the finite element results.
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